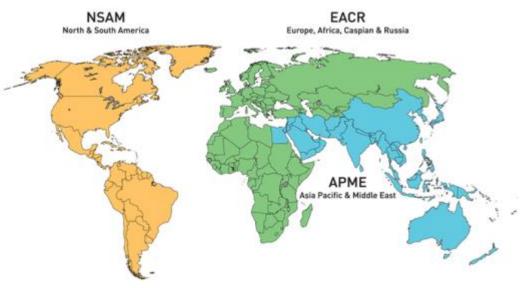
PERFORMANCE

Caldon LEFM Ultrasonics -Leading Edge Flow Meters for Custody Transfer


Dr Gregor Brown Caldon Ultrasonics Cameron

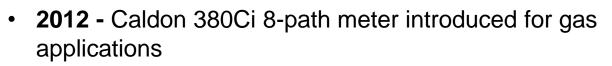
Cameron is a leading provider of flow equipment products, systems and services to the oil, gas and process industries

- Products used to control, direct, adjust, process, measure and compress flows
- Headquartered in Houston, TX
- \$6+ billion in annual orders
- 2/3 of business non-USA
- 20,000 + employees
- 300 + locations worldwide
- 60 + strong product brands
- 10 operating divisions holding leading positions in global oil & gas and process markets

Agenda

- Caldon LEFM product history
- Product line overview
- Why 4 and 8 paths?
- Issues with conventional flow conditioners
- The Caldon Gas Meter and Reducing
 Nozzle liquid ultrasonic flowmeter
- Calibration and traceability
- Application experiences

LEFM History



CAMERON

History of Caldon meters

- 1965 LEFM (Leading Edge Flow Meter) ultrasonic technology is developed by Westinghouse Electric Corporation
- 1968/1971 Patent applied for and granted to Westinghouse for the first chordal multipath meter design using Gaussian integration
- **1975 –** Nuclear Industry (Prairie Island primary reactor coolant loop, 4-path, 31-inch diameter meter)
- 1976 TransAlaska pipeline, Petroleum (23 x 48-inch 4-path meters)
- 1989 LEFM technology acquired by Caldon Inc.
- 2000 Caldon 8-path meter introduced for liquid applications
- 2006 Caldon Inc. acquired by Cameron (

The Leading Edge Flow Meter (LEFM) Product Range

Caldon LEFM 240Ci

- 4 Paths (Gaussian Arrangement)
- Linearity
 - +/- 0.15 % multi-product
- Turndown
 - 10:1 (below 10")
 - 15:1 (10" and above)
- Flow conditioning
 - Recommended
 - Tube bundle
- Reynolds no. for best accuracy
 - Greater than 10,000

Caldon LEFM 280Ci

- 8 Paths (Gaussian Arrangement)
- Linearity
 - +/- 0.1 % multi-product
- Turndown
 - 10:1 (4, 6 and 8")
 - 15:1 (10" and above)
- Flow conditioning
 - Not Required
- Reynolds no. for best accuracy
 - Greater than 10,000

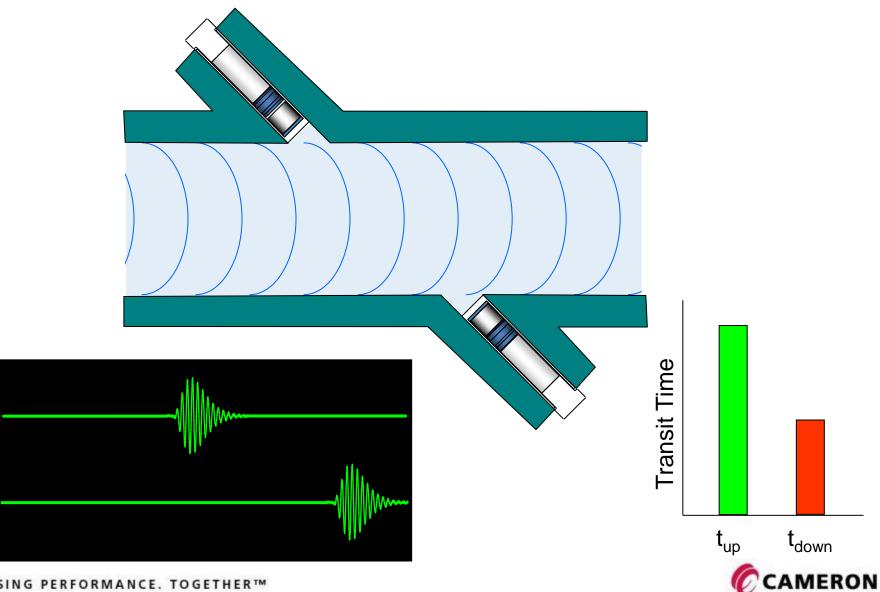
Caldon LEFM 280CiRN

- 8 Paths (Gaussian Arrangement)
- Linearity
 - +/- 0.1 % multi-product
- Turndown
 - 10:1 (6 and 8")
 - 15:1 (10" and above)
- Flow conditioning
 - Not Required
- Reynolds no. for best accuracy
 - NO LIMITATIONS
- Best repeatability/provability of the range

CAMERON	MEASUREMENT SYSTEMS
^{caldon} * LEFM [®] 280CiRN Ultrasonic Flow Meter	S
Mesuring olis huing high viscolly articler by: flow conditions may involve operating the huing olis huing high viscolly articler by: flow conditions may involve operating the dags and for Vigndia's matter balance the largit value of the provides numbers below 8,200 because the largit value of profile articles) works the balance huings' matter articles with a reformed the contractions. The matter articles was an extension of the profile articles are the largit value of the articles are the largit value of the contractions. The matter articles was an extension of the contractions of the matter articles are the articles articles are the articles articles are the articles are the articles articles are the articles articles are the articles articles are articles are articles articles are articles are articles articles are articles are articles articles are articles articles articles are articles articles articles are articles articles articles articles articles articles are articles articles arti	Costudy transfer performance atom to Regindlas Namiliens di 100 and Ioner
at Reynolds numbers below 8,000. Ultrasonic flow meter performance has traditionally been degraded for Reynolds numbers below 8,000 because the liquid velocity profile	down to Reynolds Numbers of 1000 and lower

Caldon LEFM 380Ci

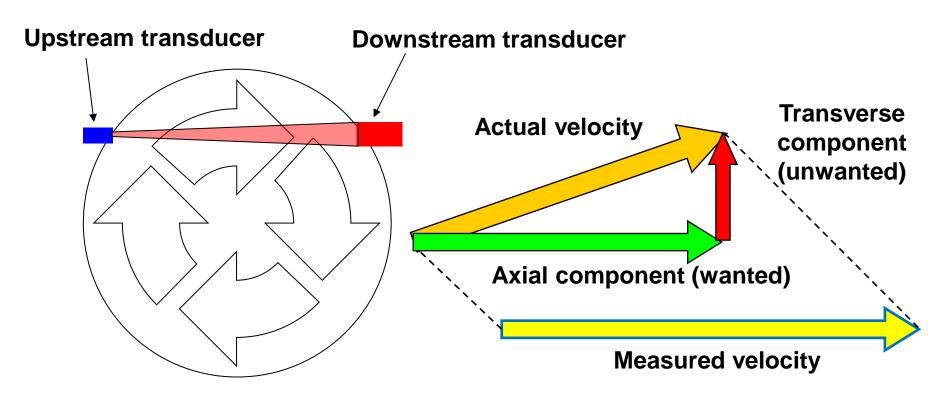
- 8-path (Gaussian) design, swirl immunity without the need for flow conditioning
- 5D minimum upstream installation length
- Transducers isolated in pressure retaining housings and removable under full line pressure without the need for special tools
- Coated meter body to maintain integrity of the meter's calibration



Why 4 and 8 paths?

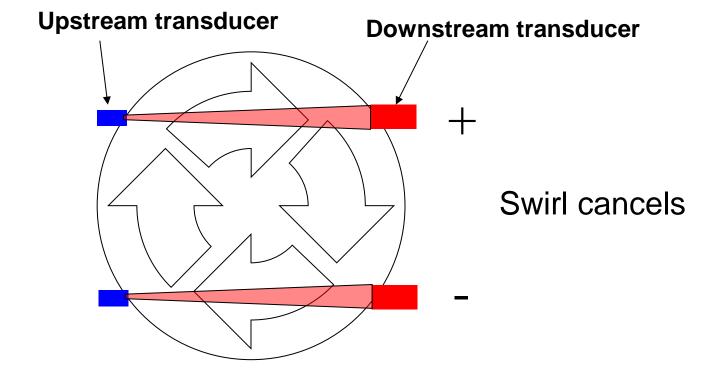
Transit time difference principle

Contributors to installed uncertainty


- Traceability of the calibration standard
- Calibration residual errors (linearisation)
- Consistent geometry
- Transit time measurement accuracy in application conditions
- INSTALLATION EFFECTS
 VELOCITY PROFILE
 SWIRL

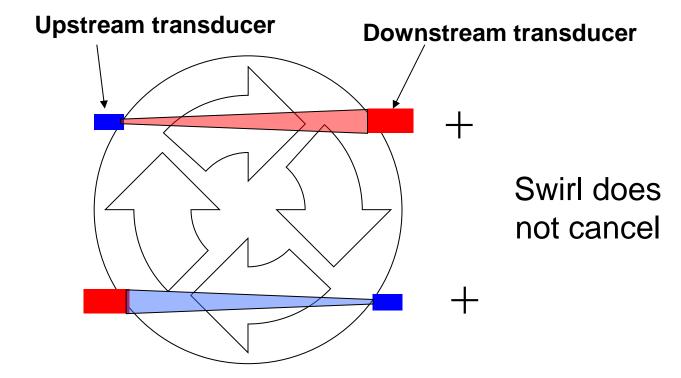
The effects of swirl

 Non-axial flow components (swirl) result in systematic errors in individual path velocities



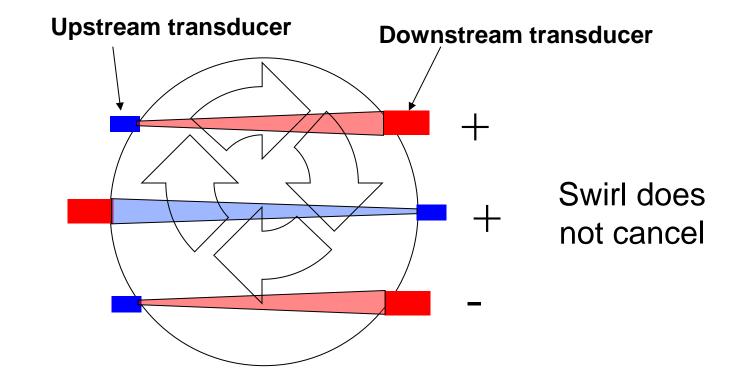
Swirl

• When dealing with non-axial flow we also have to consider the path orientation



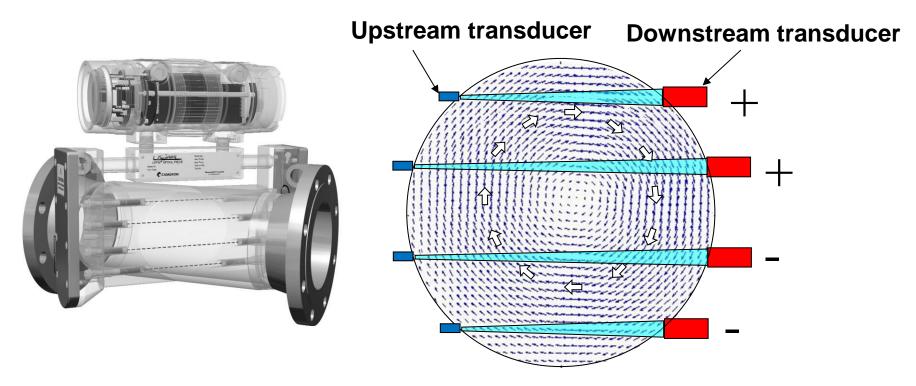
Swirl

 Crisscrossed paths behave differently to parallel paths



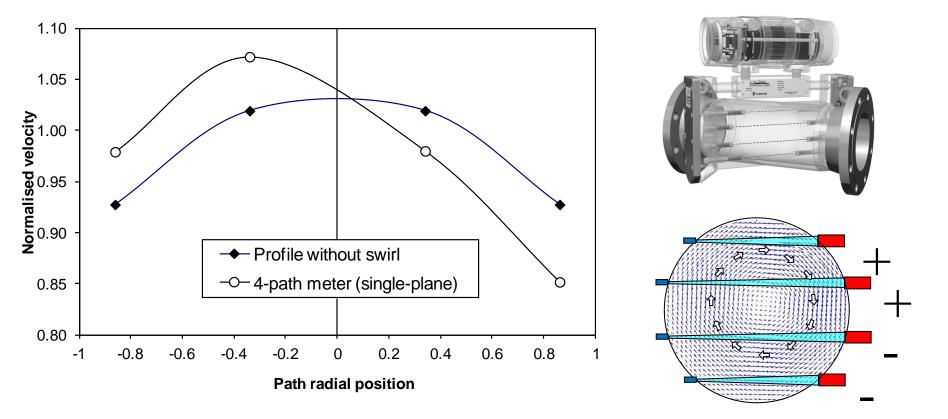
Swirl

• With single plane or criss-crossing arrangements, swirl only cancels when perfectly centred



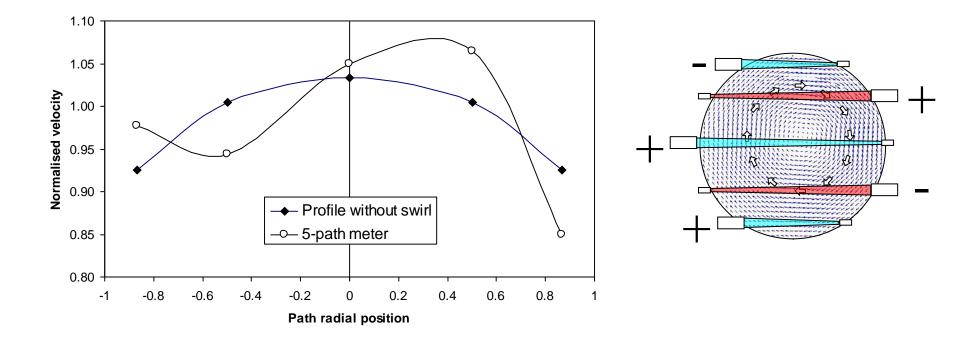
4-path, planar configuration

• With a planar arrangement, swirl only cancels when perfectly centred



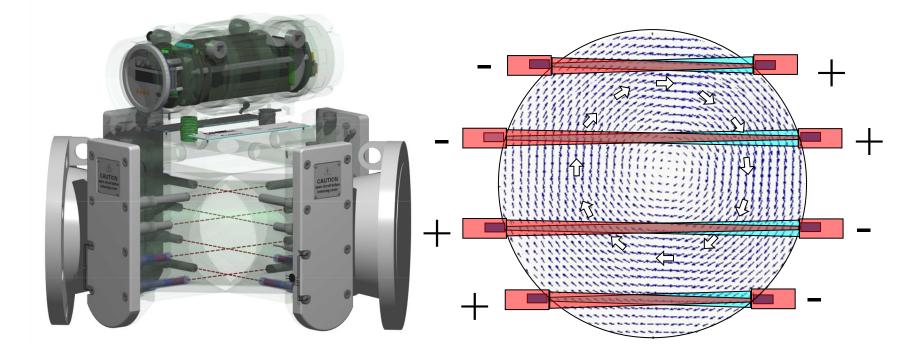
PERFORMANCE

4-path, planar configuration


• Swirl error = 0.26 %

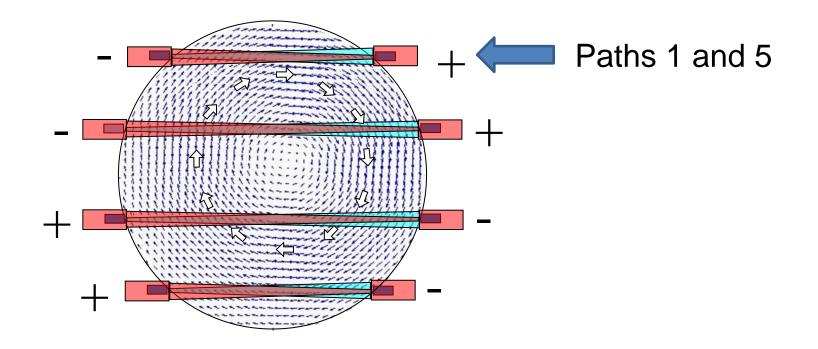
PERFORMANCE

5-path, non-planar configuration

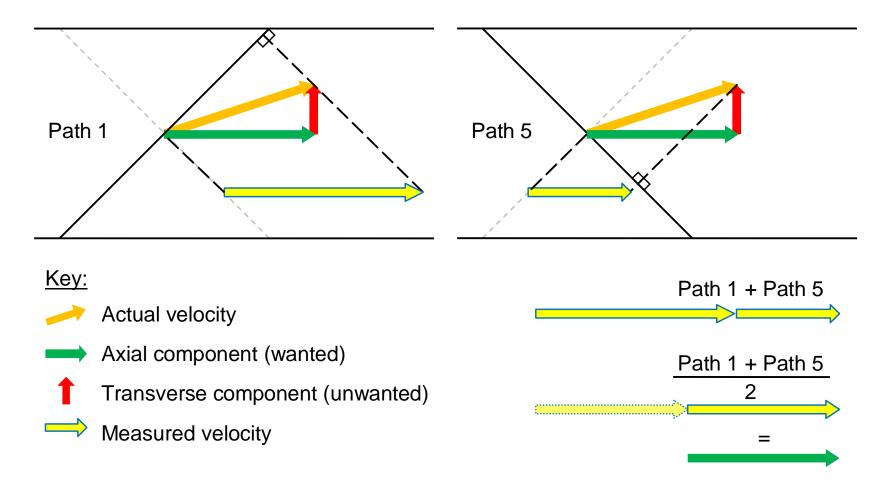

• Swirl error = 0.33 %

Eight-path Caldon 280Ci/380Ci

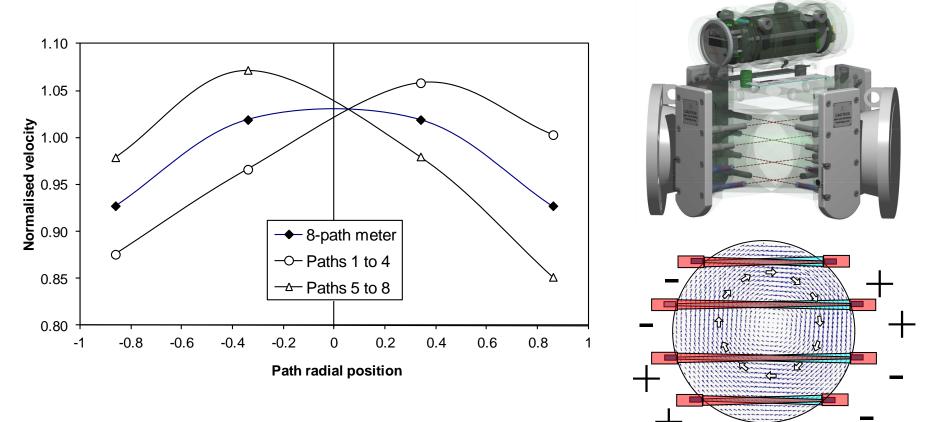
- Designed for swirl immunity
- Flow conditioning not required



How the crossed paths work

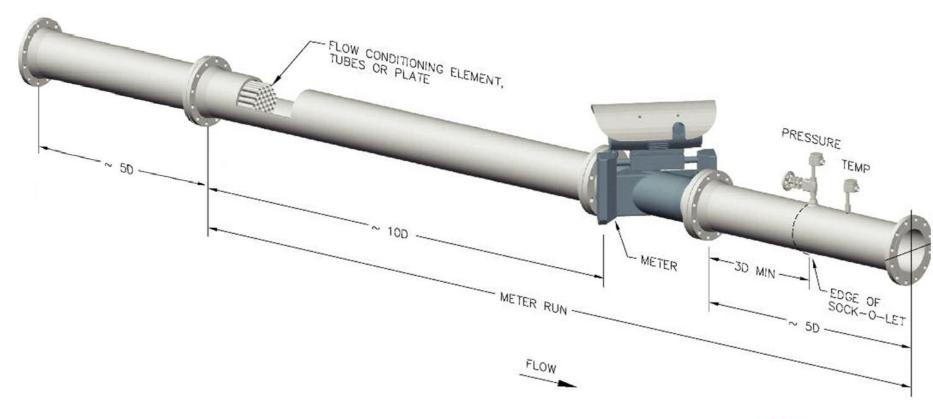

 Two crossing paths are placed precisely in each chordal plane

How the crossed paths work



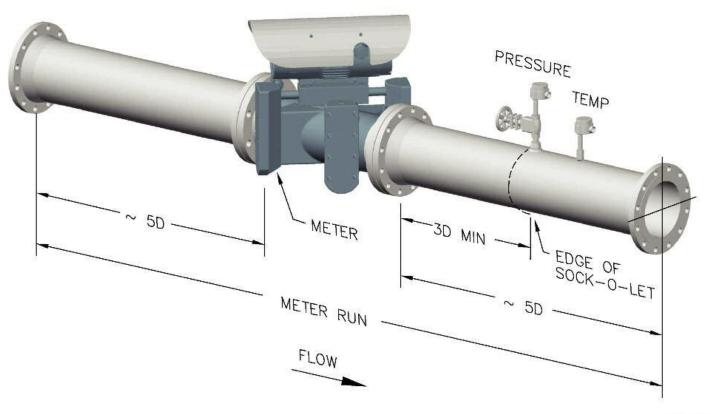
PERFORMANCE

Eight-path crossed plane design


• Swirl error = 0%

240Ci 4-path meter installation

• Upstream 10 diameters inclusive of a flow conditioner and a further 5D, typically 23D in total



280Ci/280CiRN 8-path meter installation

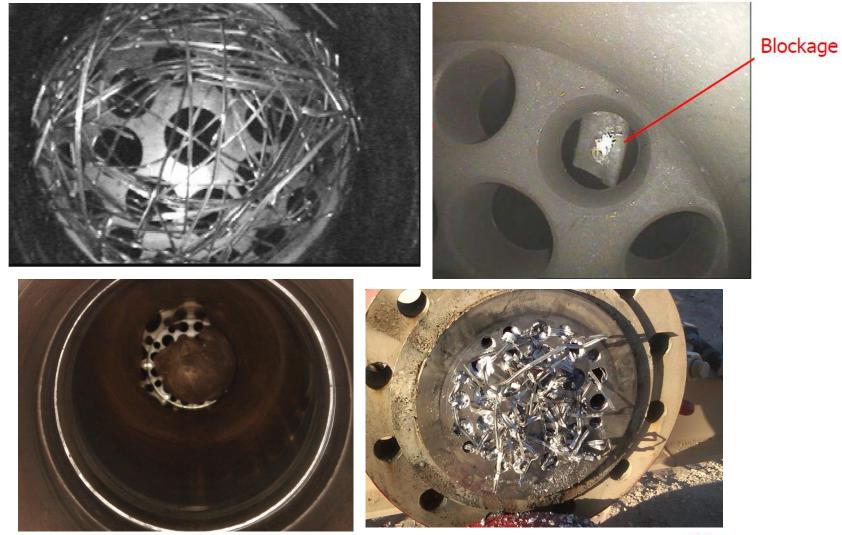
 Upstream 5 diameters, no flow conditioner, typically 13D in total

Issues with Flow Conditioners

Flow Conditioners

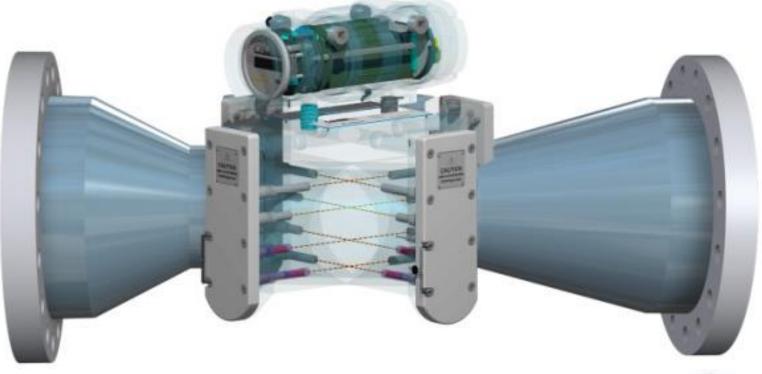
• These can be used to eliminate swirl, however...

Flow conditioners


- They create pressure loss
 - For the Keystone pipeline the estimated value of the pressure losses over the operation of the life of the pipeline was estimated to exceed 20 million US dollars
- They have to be applied properly
- They have to be maintained

PERFORMANCE

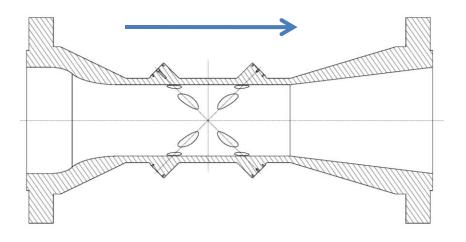
Flow conditioner maintenance


Caldon LEFM 280CiRN for High Viscosity Liquids and In-Situ Proving

Caldon meter with reducing nozzle

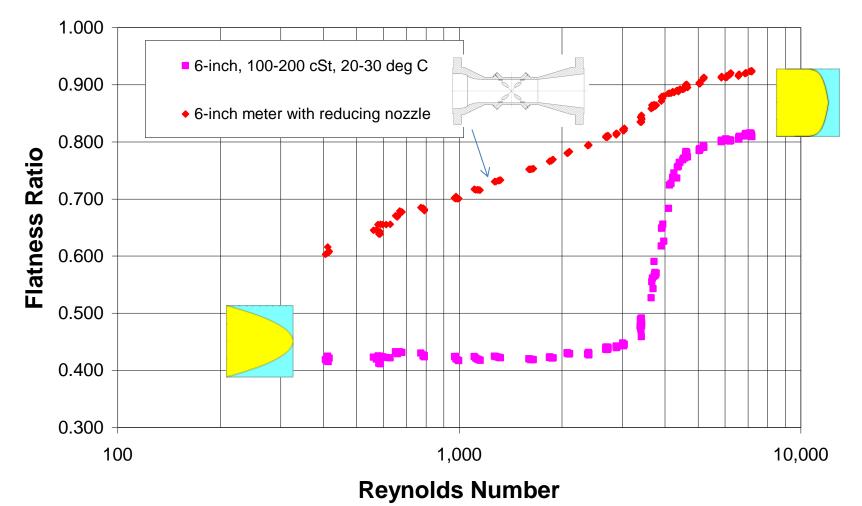
- LEFM 280CiRN
- 8-path, 4-chord measurement section in throat

Caldon meter with reducing nozzle


 Developed to tackle heavy crudes and compete with PD meter performance even through the laminar/turbulent transition region where ultrasonic meters and turbine meters perform poorly

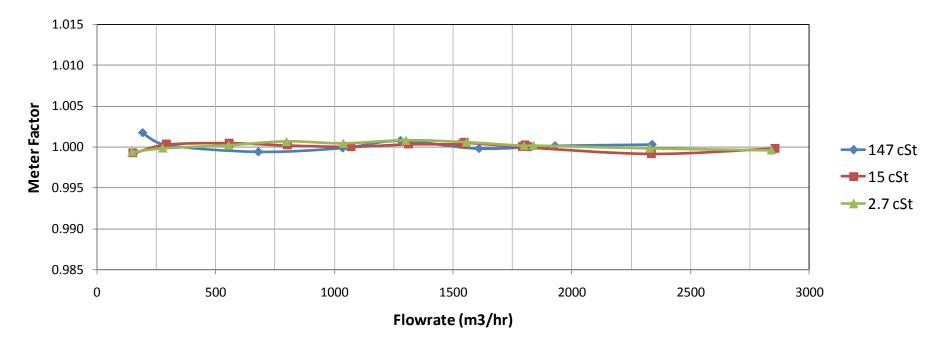
Caldon meter with reducing nozzle

- Reducing elliptical nozzle shaped inlet
- <u>Substantial</u> diameter/area reduction
- Beta < 0.64, area ratio < 0.41
- Downstream pressure recovery cone


What does it do?

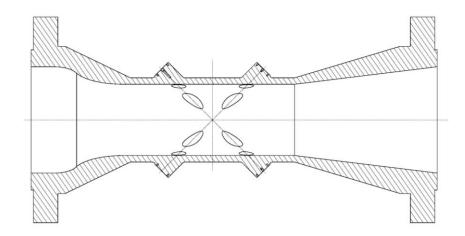
- The reducing nozzle works by:
 - Increasing the Reynolds number in the throat
 - Flattening the velocity profile and smoothing out the transition between laminar and turbulent flows
 - Reducing the relative magnitude of the non-axial velocities

Modified velocity profile behaviour

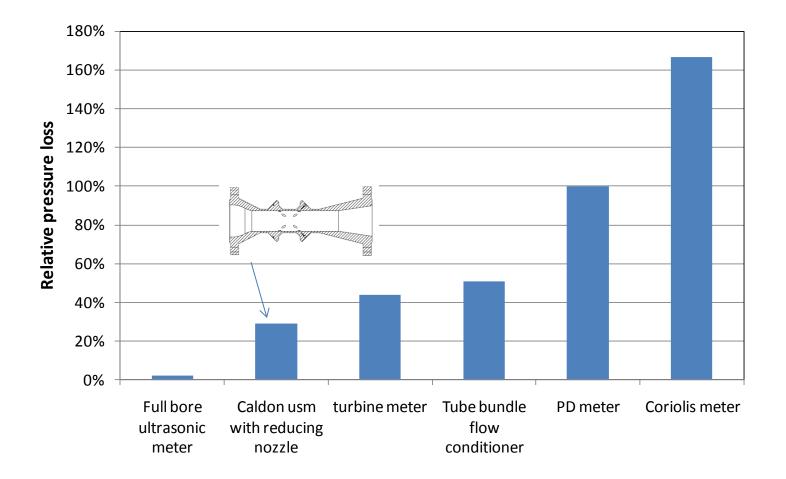


Caldon meter with reducing nozzle

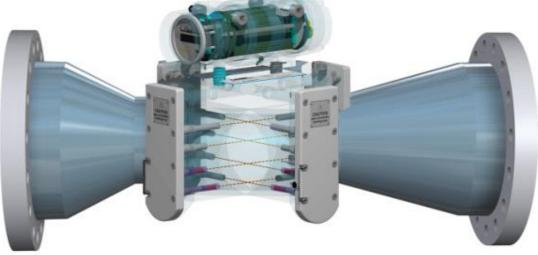
- Equals PD meter performance even through the laminar/turbulent transition region
- OIML certified with no Reynolds no. limitation



Pressure loss

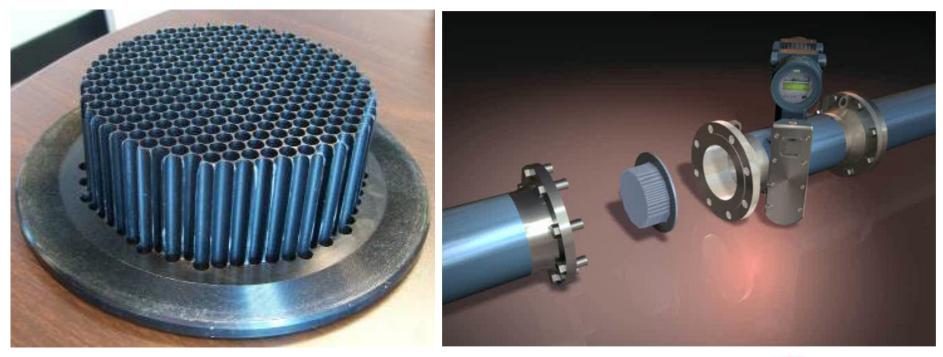

- Pressure loss
 - Losses are minimised by using a conical expansion downstream of the throat

Relative pressure loss

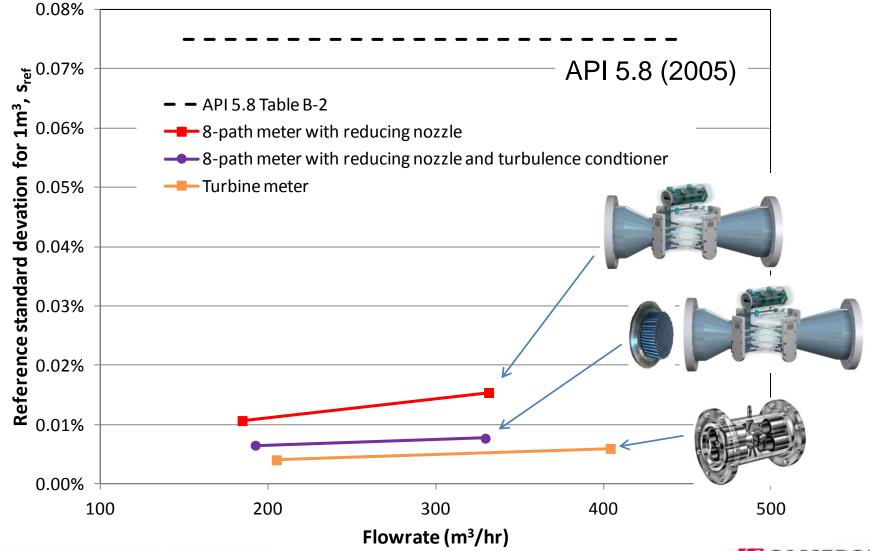


Caldon 280CiRN meter with reducing nozzle

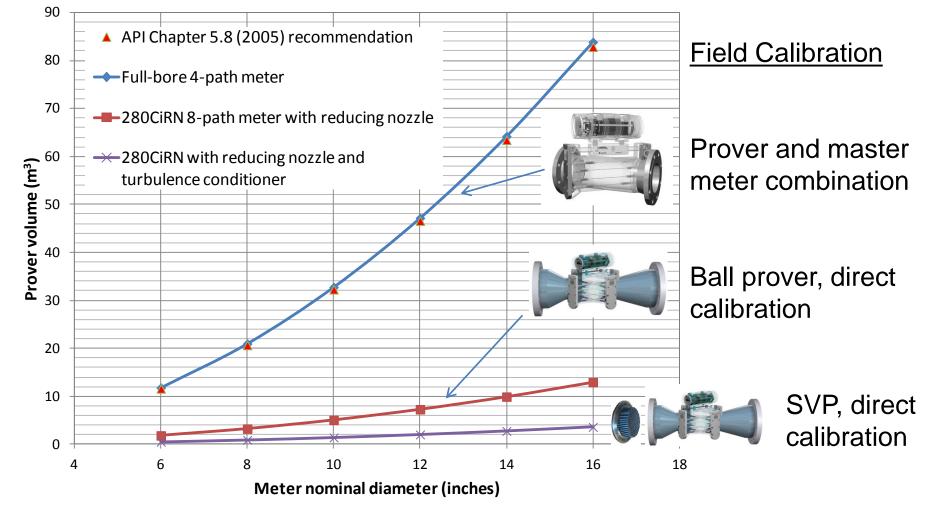
- Rapid acceleration of the flow via the smooth contour of the nozzle increases the axial velocity at the measurement section and reduces the relative magnitude of the turbulent features in the flow
- This results in a significant improvement in repeatability



Turbulence conditioner


 Restricts the size of turbulent eddies resulting in higher frequency turbulence and better averaging

Reducing nozzle & turbulence conditioner



Impact on proving volumes required

Comparison at 60% success rate

Custody transfer certification and traceable calibration for liquid measurement

Custody transfer certification

- Certification of full product range by NMi, the leading European metrology certification body
- MID Measurement Instruments Directive
- OIML R117 Dynamic measuring systems for liquids other than water

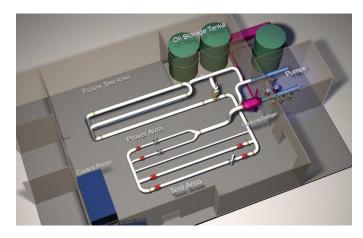
N	MÌ		Evaluation Certificate
_			Certificate
			Number TC7381 revision 5 Project number 10200358 Page 1 of 1
	Issued by	NMi Certin B.V.	
	In accordance with	of Modular Evaluation of Me	and Administrative Aspects of the Voluntary System easuring instruments under the MID.") "Dynamic measuring systems for liquids other than
	Manufacturer	Cameron Measurement Systen 1000 McClaren Woods Drive	
		Coraopolis, PA15108, United S	tates of America
•	Measuring	A Measurement sensor (ultr to be used as a part of a measurement	asonic sensor and belonging electronics), intended
	instant	Туре	: LEFM 220Ci; LEFM 220CAi; LEFM 240Ci; LEFM 280Ci; LEFM 240CiRN; LEFM 280CiRN.
		Destined for the	a president manage and the second and the second
		measurement of	 liquid petroleum and related products, liquid food and chemical products in liquid state, with viscosities 0,1 mPa·s to 3000 mPa·s.
		Q _{min} - Q _{max}	: see paragraph 1.2 of Description
		Minimum measured quantity	: see paragraph 1.2 of Description
		Accuracy class	: 0,3 (LEFM 220CAi; LEFM 240Ci; LEFM 240CiRN; LEFM 280Ci & LEFM 280CiRN)
		Environment classes	0,5 (LEFM 220Ci) : M2 / E2
		Temperature range liquid	: -40°C / +70°C (LEFMxxCi and LEFMxxCiRN)
		remperature range natio	: -50°C/+110°C (LEFMxxCi-R and LEFMxxCiRN-R)
			: -200°C / +110°C (LEFMxxCi LT-R and LEFMxxCiRN LT-R)
۲		Temperature range ambient	: -40°C/+55°C
		Further properties are describe – Description TC7381 revision ! – Documentation folder TC738	
	Remarks		is is given in Appendix TC7381 revision 5. A 4 except for its documentation folder.
	Issuing Authority	NMi Certin B.V. 2 August 2010	
	/	C. Oosterman Head Certification Board	
	NMi Certin B.V. Hugo de Grootplein 1 3314 EG Dordrecht	This document is issued under the provisi that no liability is accepted and that the applicant shall indemnify third-party liabi	objection against this decision, lity, within six weeks after the date of D. IN
	The Netherlands T +31 78 6332332 certin@nmi.nl WWW.nmi.nl	The designation of NMI Certin BV.as Noti Body can be verified at http:// ec.europa.eu/enterprise/new/approach/na	INPLETION

Custody transfer certification

- Broadest range of certification in the market
- Highest available accuracy class (0.2 % MPE)
- Covers 4 and 8 path meters, full bore and reducing nozzle variants
- Meter diameters from 4 to 24 inch
- Viscosity range 0.1 to 3000 cP
- Temperature from -200 °C to +110 °C
- Turndown of 50:1 possible

Caldon meter calibration

- Every Caldon meter is given a fully traceable flow calibration using liquid hydrocarbons . . . <u>even if it is going to be proven in-situ</u>
- This ensures the highest possible performance (lowest uncertainty) in the final application


CALDON ULTRSONICS TECHNOLOGY CENTRE CALIBRATION LABORATORY

Main laboratory area

- Prover
- Master meters
- Heat exchanger
- Test meter lines
- 7.5 ton bridge crane
- Main control room

The floor is recessed (7 inches) to provide containment in case of a possible spill

Calibration fluids

- Refined hydrocarbon oils
- Oils chosen to give a good range of viscosity for Reynolds number overlap
 - EXXSOL D80, kerosene substitute, approx. 3 cSt
 - DRAKEOL 5, approx. 15 cSt
 - DRAKEOL 32, approx. 150 cSt

Unidirectional ball prover

 20-inch diameter, 10 cubic meter calibrated volume ball prover, flow range of 40 to 2200 m³/hr

Chosen route for certification/accreditation

- NEL, Trapil and SPSE are all accredited to ISO17025 by the recognised authority in their respective countries (UKAS, COFRAC)
- Equivalence required that the Caldon laboratory should also have ISO17025 accreditation
- Various providers in the USA
- Caldon chose to use the National Voluntary Laboratory Accreditation Program (NVLAP) operated by the National Institute of Standards and Technology (NIST)

Mutual recognition arrangements

- NVLAP is a signatory to the following MRA's:
 - ILAC International Laboratory Accreditation Cooperation
 - APLAC Asia Pacific Laboratory Accreditation
 Cooperation
 - IAAC Inter American Accreditation Cooperation

Asia Pacific Laboratory Accreditation Cooperation

NVLAP Certified Uncertainties

0.07%

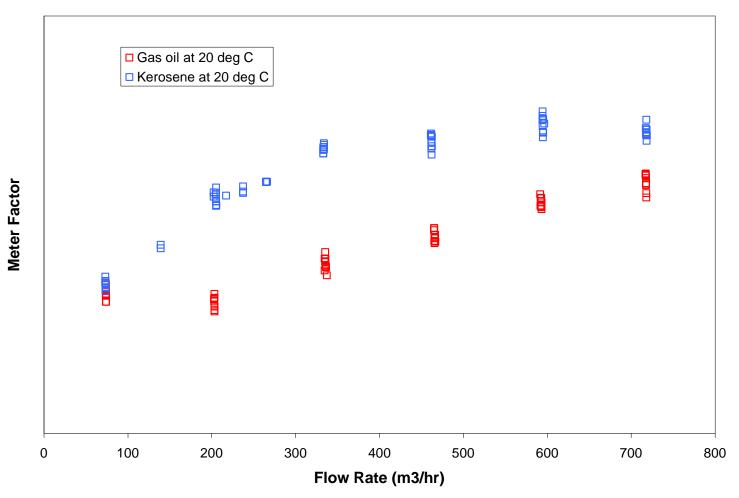
- 10 to 750 m³/hr
 - Small volume prover 0.03%
 - Turbine master meter 0.04%
- 150 to 2200 m³/hr
 - Ball prover 10 m³
 0.04%
 - Ball prover 3.3 m³
 - One master meter 0.09%
- 600 to 3900 m³/hr
 - Two master meters 0.08%

NVUAU	National Voluntary Laboratory Accredi	tation Program
SCOP	E OF ACCREDITATION TO) ISO/IEC 17025:2005
	Cameron Measurement Caldon Ultrasonics Techno 1000 McClaren Woods Coraopolis, PA 15108 Mr. Bobbie Griffit Phone: 724-273-9134 Fax: 7 E-mail: bobbie griffith@c	logy Center Drive -7766 h 24-273-9301
CALIBRATION LAP	BORATORIES	NVLAP LAB CODE 200813 Scope Revised: 2011-08-
MECHANICAL		
NVLAP Code: 20/M05 Flow Rate (Hydrocarbon	Fluids Only) ^{Note2,3}	
Range in m ³ /h	Best Uncertainty (±) in %	
10 to 750	0.03	Brooks Small Volume Prover
10 to 750 150 to 2200	0.04	One Master Meter 10 Cubic Meter Prover Volume
150 to 2200 50 to 200	0.04	3.3 Cubic Meter Prover Volume
300 to 2000	0.09	One Master Meter
600 to 3900	0.08	Two Master Meters
of 95 %. 2. The laboratory perfo	led uncertainty using a coverage factor ms calibrations of pulse generating flo ms volumetric flow calibrations only (
	h 2012-06-30	Sally S. Bruce

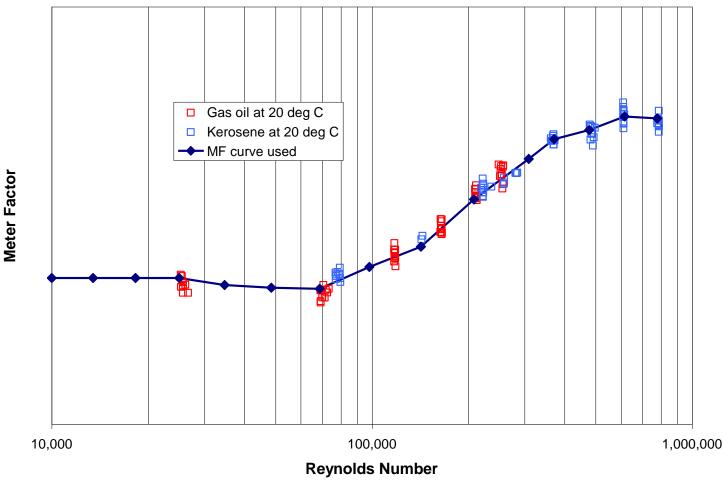
Calibration Process

- For Caldon meters the calibration process typically involves tests on multiple fluid viscosities and entry of the resulting data in a look up table in the meter's electronics
- This creates a meter that is insensitive to changes in viscosity/Reynolds number over the range covered by the test fluids

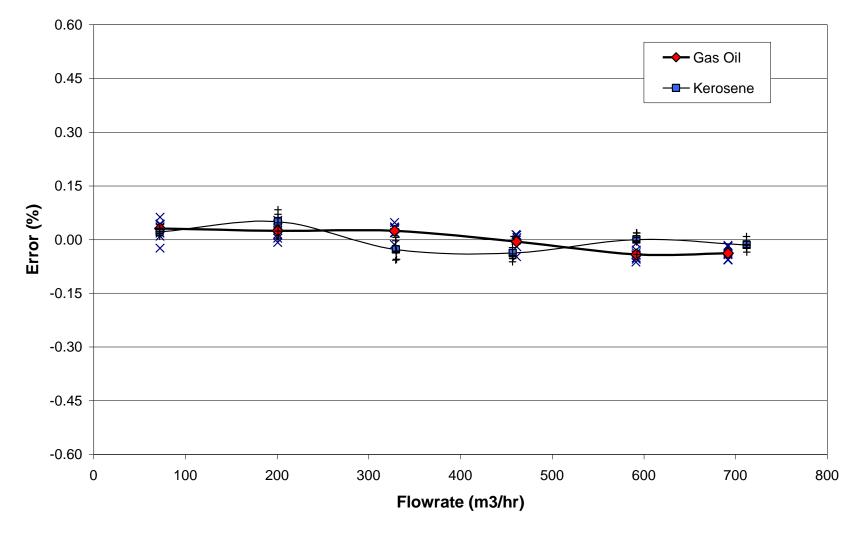
Reynolds number


 Reynolds number describes the flow conditions in terms of velocity, pipe diameter and viscosity, and essentially defines the flow velocity profile characteristics of importance to ultrasonic meters

Reynolds number =
$$\frac{Velocity \times Diameter}{Kinematic \ viscosity}$$


Raw Calibration vs Flow Rate

Raw Calibration vs Reynolds Number


Calibration

- The data is arranged in the form of a curve of meter factor versus Reynolds number and measured velocity profile shape
- This curve is then entered into the flow meter electronics, where the Reynolds number and velocity profile shape are calculated without the need of user inputs
- The result is a meter that is linear even when the fluid viscosity changes over a wide range

Final Calibration

Method acknowledged in NMi certification

 "If a measurement sensor is intended to be used with single or multiple liquids without adjustments, then the sensor has to be calibrated over the applicable range of Reynolds number, using one or more fluids, while the accuracy conditions are met for each fluid."

N	M		Evaluation
_	\smile		Certificate
			Number TC7381 revision 5 Project number 10200358 Page 1 of 1
	Issued by	NMi Certin B.V.	
	In accordance with	of Modular Evaluation of Me	and Administrative Aspects of the Voluntary System easuring instruments under the MID."
		 OIML R117-1 Edition 2007 (E) water".) "Dynamic measuring systems for liquids other than
	Manufacturer	Cameron Measurement System	15
		1000 McClaren Woods Drive Coraopolis, PA15108, United St	tates of America
•	Measuring		asonic sensor and belonging electronics), intended
-	instrument	to be used as a part of a measu Type	uring instrument. : LEFM 220Ci; LEFM 220CAi; LEFM 240Ci; LEFM
		()pe	280Ci; LEFM 220CAI; LEFM 240Ci; LEFM 240Ci; LEFM
		Destined for the measurement of	: liquid petroleum and related products, liquid
		measurement of	food and chemical products in liquid state, with viscosities 0,1 mPa-s to 3000 mPa-s.
		Q _{min} - Q _{max}	: see paragraph 1.2 of Description
		Minimum measured quantity	: see paragraph 1.2 of Description
		Accuracy class	: 0,3 (LEFM 220CAi; LEFM 240Ci; LEFM 240CiRN; LEFM 280Ci & LEFM 280CiRN)
			0,5 (LEFM 220Ci)
		Environment classes	: M2 / E2
		Temperature range liquid	: -40°C / +70°C (LEFMxxCi and LEFMxxCiRN) : -50°C / +110°C (LEFMxxCi-R and LEFMxxCiRN-R)
			: -200°C / +110°C (LEFMxxCi LT-R and
		Temperature range ambient	LEFMxxCiRN LT-R) : -40°C / +55°C
-			
		 Further properties are describe Description TC7381 revision 5 Documentation folder TC738 	5
	Remarks		is is given in Appendix TC7381 revision 5. A except for its documentation folder.
	Issuing Authority	NMi Certin B.V.	2
	1. S. S. S. S. P. P. 1	2 August 2010	
		9 1. 1/1//	
		12 AVVIS	
		C. Oosterman Head Certification Board	
	NMI Certin B.V. Hugo de Grootplein 1 3314 EG Dordrecht	This document is issued under the provisio that no liability is accepted and that the applicant shall indemnify third-party liabil	objection against this decision.
	The Netherlands		submission, to the general manager
	T +31 78 6332332 certin@nmi.nl www.nmi.nl	The designation of NMi Certin BV.as Notif Body can be verified at http:// ec.europa.eu/enterprise/newapproach/nar	ndo Reproduction of the complete DuA 122
			document only is permitted. INVA 1122

Summary

- Every Caldon meter goes through a calibration process that ensures it meets custody transfer performance requirements over the full range of the customers operating conditions
- Each meter is provided with a calibration certificate according to Cameron's NVLAP and VSL certification, meaning that the meter has sufficient traceability to ensure custody transfer accuracy in the field

Summary

- For meters that will be proven in situ, each meter goes through this process once before shipping but thereafter there is no requirement to return the meter to return to the lab for recalibration
- In the case of in-situ proving, the calibration therefore allows for optimisation of meter linearity and also serves as a final quality assurance check on the whole meter against a flow standard of low uncertainty

APPLICATION EXAMPLES

Custody Transfer Metering

Conventional systems with permanently installed provers

PEMEX – Bi-directional direct proving

- Gulf of Mexico
- Yuum Kak Naab FPSO
- Five 12-inch Caldon
 240Ci USMs
- Large 30-inch bidirectional ball prover

Yùum K'ak'Náab FPSO Contract duration: 2007 – 2022 (2025) Oil handling capacity 600,000 bbl/d Oil processing capacity 200,000 bbl/d Gas compression capacity 120 mmscfd Storage capacity 2,200,000 bbl Mooring: Turret Location/field: Mexico/KMZ Client: Pemex

PEXEX – Yuum Kak Naab FPSO

Proving with portable provers

Sunoco Toledo refinery, 8-path meter

Toledo refinery proving reports

-

Flowrate	3203.8			
Totalizer			0	
Throughput	0			
			64.0	
R.D. @ 60 F			0.72380	
Viscosity	,		0	
Avg Prvr Tem	D		63.4	
Avg.Prvr Press			172.0	
Repeatability	r		0.035%	
MF			1.0012	
MF Variation	9		0.0000	
Liquid Properties at Metering Conditions for CMF Normal Op. Pressure 0 psig Eq. Vapor Pressure 0 psig CPL 1.00000				
RUN Accepted?				
IMF				
54 1	Ye	5	1.00114	
16 2	Ye	-	1.00125	
1 3	Yes	-	1.00146	
17 4	Ye	-	1.00110	
5074			1.00121	

Flowrate	3044.2
Totalizer	0
Throughput	0
API @ 60 F	42.5
R.D. @ 60 F	0.81320
Viscosity	0
Avg Prvr Temp	66.0
Avg Prvr Press	168.0
Repeatability	0.043%
ME	1.0011
MF Variation	1.0011

Liquid Properties at Metering Conditions for CMF

Normal Op. Pressure	0	psig
Eq. Vapor Pressure	0	psig
CPL	1.00000	

	RUN	Accepted?	
			IMF
	1	Yes	1.00114
	2	Yes	1.00096
	3	Yes	1.00139
	4	Yes	1.00104
	5	Yes	1.00098
2			1.00110

Flowrate	2138.4
Totalizer	0
Throughput	0
API @ 60 F	35.5
R.D. @ 60 F	0.84730
Viscosity	0
Avg Prvr Temp	75.3
Avg Prvr Press	247.0
Repeatability	0.022%
ME	1.0010
MF Variation	1.0010

Liquid Properties at Metering Conditions for CMF

Normal Op. Pressure	0	psig
Eq. Vapor Pressure	0	psig
CPL	1.00000	

	RUN	Accepted?	
i			IMF
607	1	Yes	1.00095
940	2	Yes	1.00107
029	3	Yes	1.00085
617	4	Yes	1.00105
867	5	Yes	1.00098
9.4120			1.00098

6-inch 280CiRN – SVP, DIRECT proving

Reporting Method: Minimum # of Runs Criteria: Passes Per Run: Repeatability Criteria Limit: Calculated Repeatability (R): Repeatability Met?:

Avg Data Me	thod
5	Runs
4	
0.00050	
0.00047	
Yes	

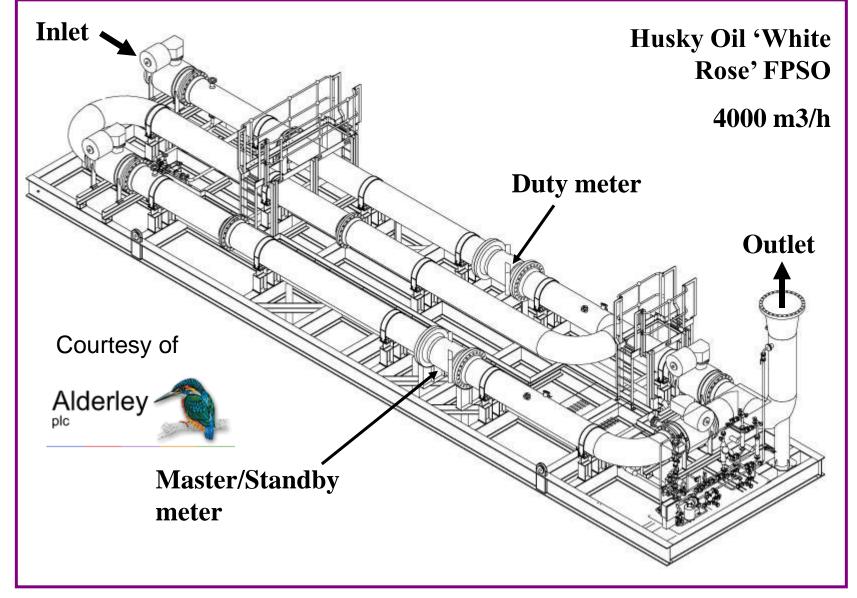
Signatur

Prover Data your Name, Y Vol (BPV); Vol (3PV); Vol (3PV); vol (3PV); vol (3PV); vol (3PV); sticity (E); saticity (E); saticity (E); Shaft (G); sion (GC); Coeff (GA); Type: Detectors: al Number: nufacturer; T's T's T's T's Sid, 79.2 <	WestTexas 0.9518370 0.9518370 20.50	Bbls inches inches per psi per deg F per deg F per deg F per deg F olume 2267 ron 2011	Mete Meter tr Minimum # Repeatab Calculated	tesurement Me Mete rr K Factor (p Prover Po Gravity teporting M t of Runs C Passes Pe illity Criteria	ter ID:INOI r Size: NKF): sition: Basis: ethod: r Run: Limit: ty (R): Met?: Sec0	6.00 2,000.00 UpStr Live An Avg Data 2 0.00056 0.00047 Yes Run (I	0 inches 0 ppb eam malysis Method 5 Runs 4 0 7 5 8 MF)
Vol (BPV) Vol (BPV) meter (ID): asticity (E): asticity (E): nsion (GC): Cooff (GA): Type: Detectors: al Number: rutacturer: draw Date: rature (F) T's Tm 63.5 79.2 63.4 79.2 63.2 79.2 20.9 79.2	0.9518370 0.9518370 20.50 3.51 28,000,000 0.0000096 0.0000096 0.0000192 SmallV0 V ST-050 Calibu 10/05/2 Pressum Pp 467.5 471.0 474.6	Bbls inches inches per psi per deg F per deg F per deg F lume 2267 ron 2011 (psig) Pm 473.5 476.5	Mete Meter tr Minimum # Repeatab Calculated R Pulses Ni 1,897.060	Me Mete Mete o Prover Po Gravity teporting M t of Runs C Passes Pe ility Criteria Repeatability Flow Rate Gross BD	ter ID:INOI r Size: NKF): sition: Basis: ethod: r Run: Limit: ty (R): Met?: Sec0	LE_ACK 6.00 2,000.00 UpStr Live An Avg Data 2,00005 0.00047 Yes Run (I	0 inches 0 ppb eam malysis Method 5 Runs 4 0 7 5 8 MF)
nsion (GC): Coeff (GA): Type: Detectors: al Number: Inufacturer: draw Date: Trature (F) Ts Tm 63.5 79.2 63.4 79.2 63.2 79.2	0.000000 0.000192 SmallVc Y ST-050 Calibi 10/05/2 Pressure Pp 467.5 471.0 474.6	per deg F per deg F olume 2267 ron 2011 e (psig) Pm 473.5 476.5	Minimum # Repeatab Calculated Ri Pulses Ni 1,897.060	eporting M of Runs C Passes Pe illity Criteria Repeatabilit epeatability Flow Rate Gross BP	ethod: // riteria: r Run: Limit: ty (R): Met?:	Avg Data 0.00050 0.00047 Yes Run (I	Method 5 Runs 4 7 5 MF)
Ts Tm 63.5 79.2 63.4 79.2 63.2 79.2 63.2 79.2 62.9 79.2	Pp 467.5 471.0 474.6	Pm 473.5 476.5	Ni 1,897.060	Gross BPI		,	,
63.5 79.2 63.4 79.2 63.2 79.2 63.2 79.2 62.9 79.2	467.5 471.0 474.6	473.5 476.5	1,897.060			NA	
63.2 79.2 62.9 79.2	474.6		1,896.870				1
62.9 79.2		480.3		1,987.95	0.4535	NA	1
			1,897 - 30	1,975.63	0.4535	NA	4
62.7 79.2		479.1	1,896.850	1,969.05			
63.1 79.2	472.9 472.0	479.0	1,896.330	2,024.40	0.4535		
GSVp CTSp	CPSp		CTLp				GSVp
1.00039	1.00010	x (0.95580	x 1.0	1335	=	0.92236
2.000 or (NKF / MF)	= 0.94	8440 1,990	x CTLm 0.95480	х	CPLm 1.01372	-	ISVm 0.91799
rs based on							
	1.00039 ISMIN Pulses / BBL 2.000 or (NKF / MF) f (GSVp / ISV	1.00039 1.00010 1.00039 Gross M Pulses / BBL Gross M 2.000 0.94 or (NKF / MF) : 1 f (GSVp / ISVm) : 1.	1.00039 1.00010 X Sym Pulses / BBL Gross Mtr Vol 2.000 0.948440 or (NKF / MF) : 1,990 f (GSVp / ISVm) : 1.0048 rs based on Product :RAW	1.00039 1.00010 0.95580 SFIT Pulses / BBL Gross Mtr Vol CTLm 2.000 0.948440 0.95480 or (NKF / MF): 1.990 f (GSVp / ISVm): 1.0048 s based on Product :RAW	1.00039 x 1.00010 X 0.95580 X 1.0 Sym Pulses / BBL Gross Mtr Vol X CTLm X 2.000 0.948440 0.95480 or (NKF / MF) : 1,990 f (GSVp / ISVm) : 1.0048 * based on Product :RAW Flowm	1.00039 N 1.00010 X 0.95580 X 1.01335 Brin Pulses / BBL Gross Mir Vol X CTLm X CPLm 2.000 0.948440 0.95480 1.01372 or (NKF / MF) : 1.990 f (GSVp / ISVm) : 1.0048 r based on Product :RAW Flowmeter :SEM	1.00039 N.00010 X 0.95580 X 1.01335 = Symm Pulses / BBL Gross Mtr Vol X CTLm X CPLm = 2.000 0.948440 0.95480 1.01372 =

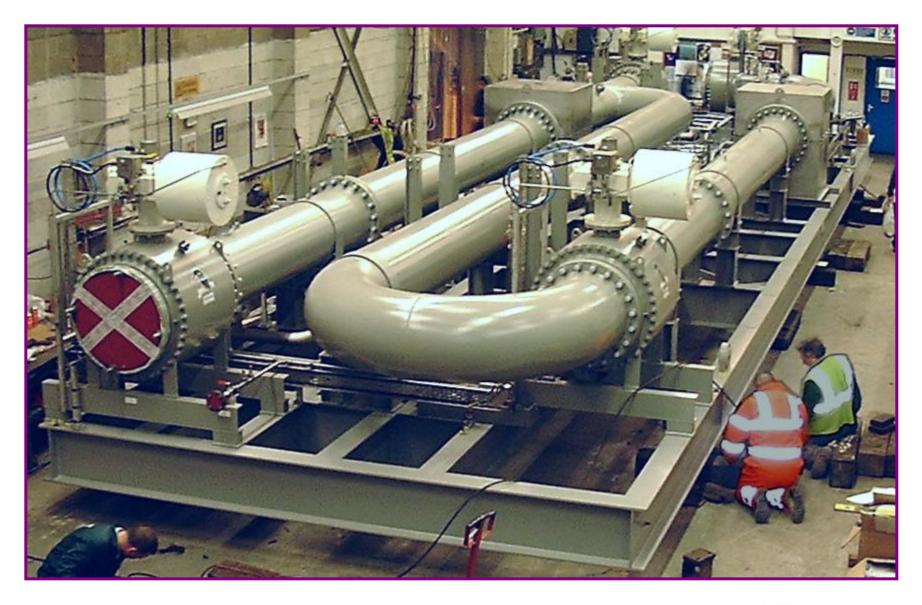
12/12/2011

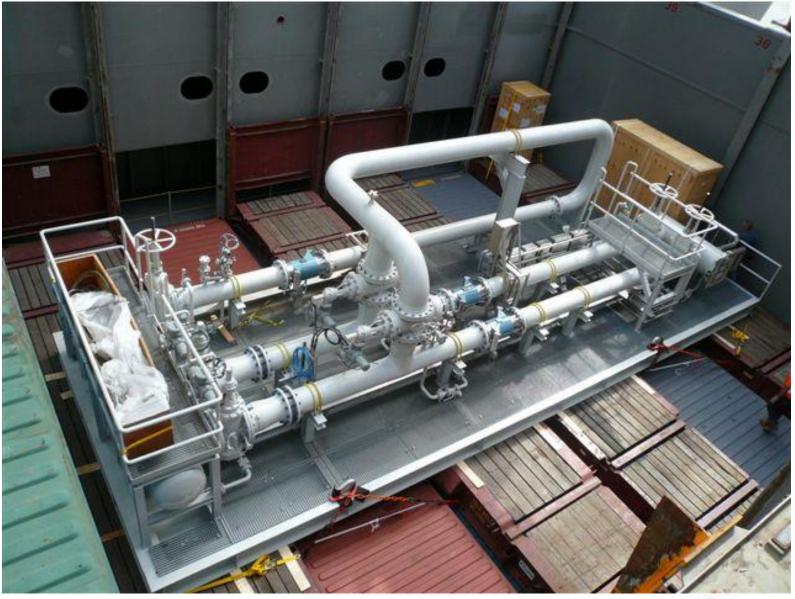
Company Represented

Master/Duty or Pay/Check installations



Tullow Oil, 4-path pay and check



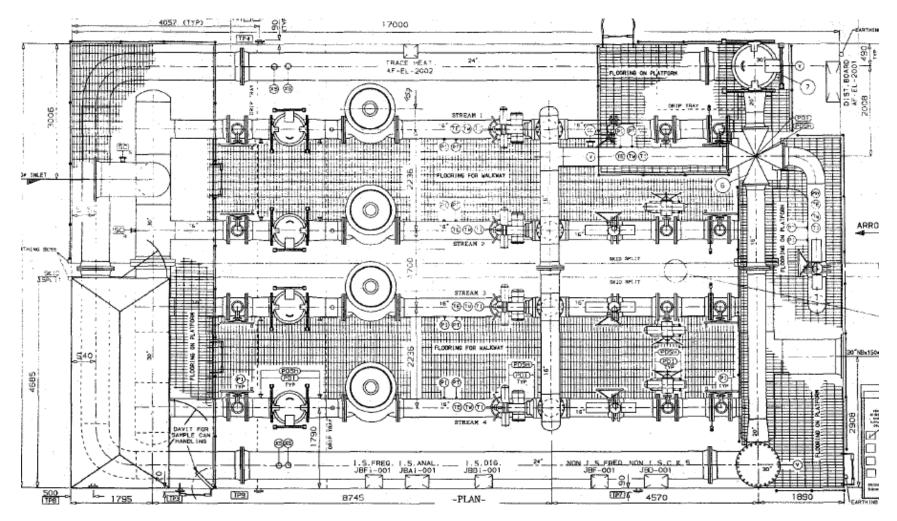


MEASUREMENT SYSTEMS C Flow Meters - Multipatherie C R M A N C E

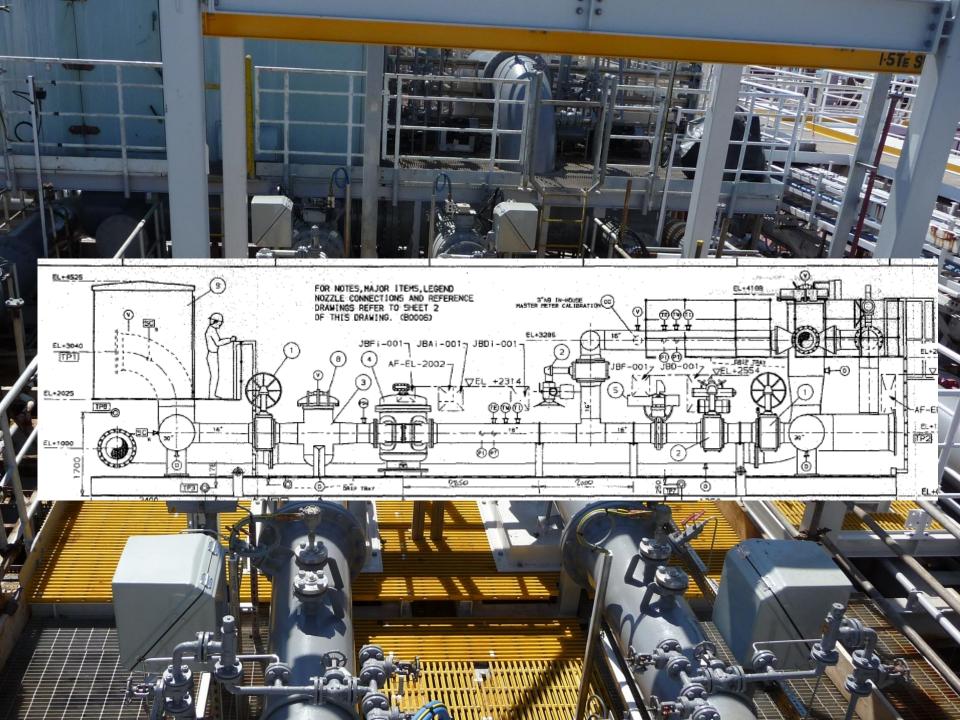
FPSO Aoka Mizu, Nexen/Bluewater, UK North Sea

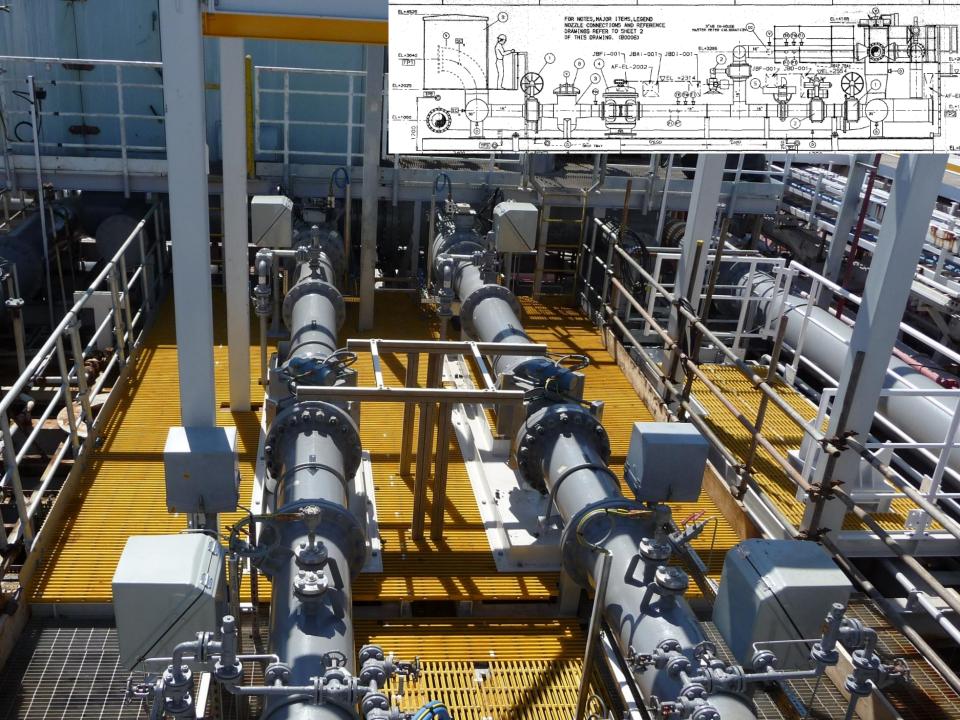
- Design Capacity 6500 m3/h
- Configuration: 2+Master
 Meter
- 14" LEFM 240C
- Master Meter Proving

Retrofit/replacement of traditional mechanical meters


Replacement of PD meters

- Replacement of failed system based on positive displacement (PD) meters
- Limited installation space as PD meters are not sensitive to installation effects
- 16-inch Caldon 8-path 280Ci flowmeters installed
- 5 diameters of upstream pipe, 3 diameters of downstream pipe
- Approved by the UK regulator (DECC)



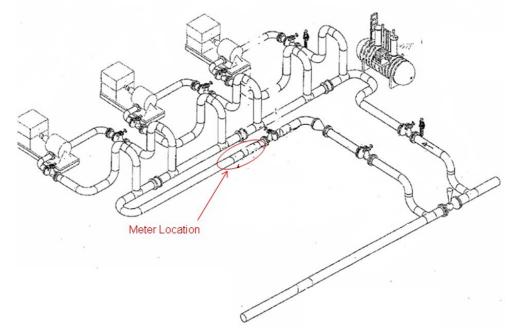


Original PD meters and bi-direction prover

Pipeline Leak Detection

Leak Detection - Keystone Pipeline

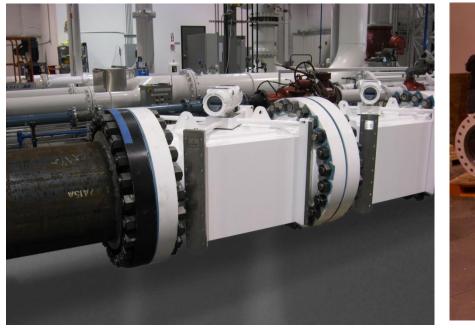
- TransCanada and ConocoPhillips joint venture
- 2,148 mile crude oil pipeline from Alberta to US markets
- 39 pumping stations along the line
- One meter per station



Pumping station layout

- Meters to be installed in 20-inch section downstream of out-of-plane bends
- Location requires flow conditioning or an 8-path meter to achieve the required accuracy

Pumping Cost


- Use of flow conditioners at each station would generate significant pressure loss
- The present value of the pressure losses over the operation of the life of the pipeline was estimated to exceed 20 million US dollars
- Therefore the Caldon 8-path meter was selected as it does not require flow conditioning

Keystone meter calibration

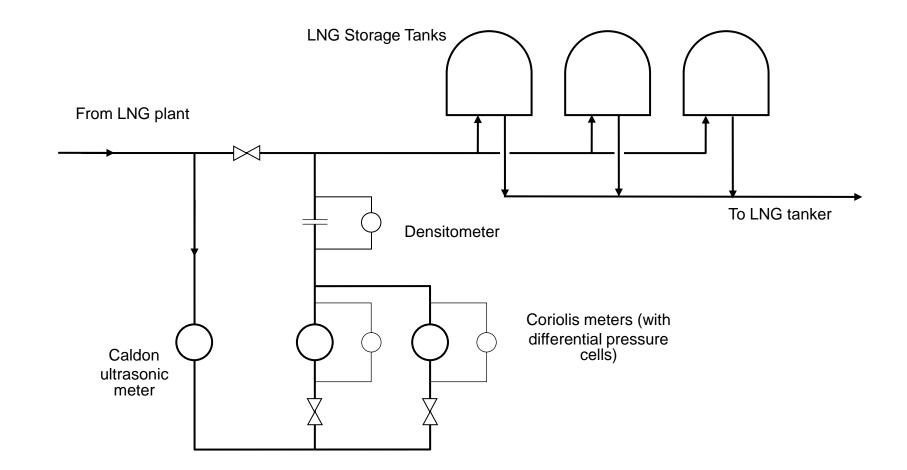
 Each meter was flow calibrated in the Cameron facility with three oils to cover the multi-product application conditions

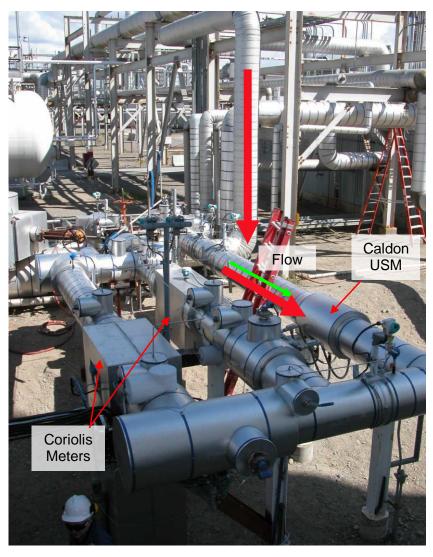
LNG Allocation and Custody Transfer

Qatar Common LNG Facilities

- Common storage and shared offloading for multiple production joint ventures
- Massive cost savings (estimated 1 billion \$ us)
- Allocation metering is a key enabling technology

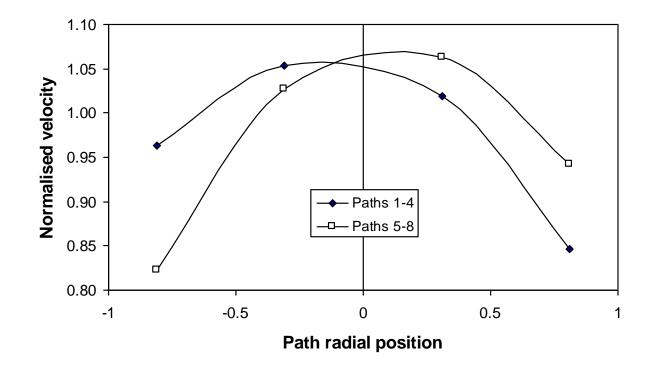
Field tests


- A six-inch 8-Path Caldon 280C was selected for the tests, along with Coriolis meters from two different manufacturers
- Tests were carried out at the ConocoPhillips LNG plant in Kenai, Alaska

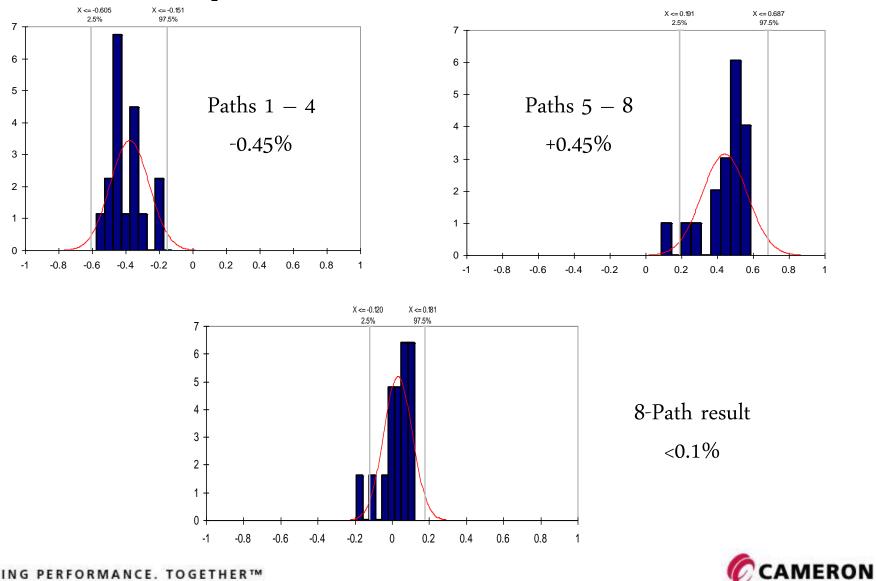

Test site

Out-of-Plane Bends

37 diameters of straight pipe


upstream

Path Velocities Confirm Swirl



 Max swirl angle of approx 5 degrees (or one full rotation every 48 pipe diameters)

A and B Outputs

Test Outcomes

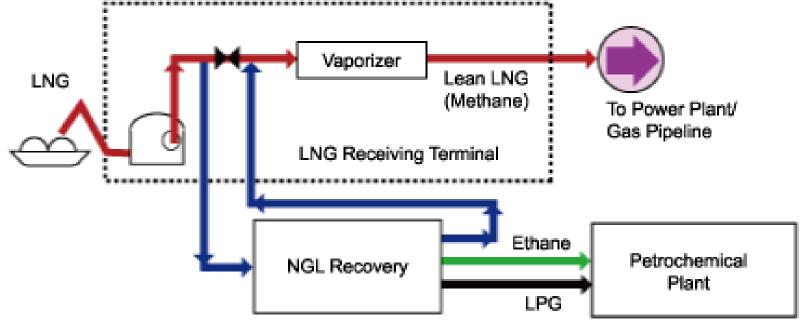
- 22 Caldon LEFM 280C-LT flow meters employed for allocation metering at Ras Laffan
- Same technology selected for custody transfer of LNG at the Dajeh receiving facilities in India

Dahej Re-Gasification Plant, India

Dahej Re-Gasification Plant, India

- Expansion project includes new storage facility and new jetty
- New Jetty will be able to dock Q-Flex and Q-Max tankers
- Contract with Qatar to receive 7.5 MTPA LNG
- Dynamic measurement of LNG to Gas using LEFM 280C meters

Dahej Re-Gasification Plant, India



LNG Custody Transfer

- ONGC India & partners
- Dahej receiving terminal
- NGL recovery and gas transmission by ONGC and Gail

Dahej Re-Gasification Plant, India

Constructed by Toyo Eng for Petronet

Two 8 path meters in series for redundancy

SUMMARY

- Caldon products have been engineered to provide high accuracy in a diverse range of applications
- The 8-path configuration enables elimination of flow conditioning and reduction of the installation footprint for the metering system
- The Reducing Nozzle variant of the meter enables measurement of high viscosity oils and improved repeatability
- The products are supplied with traceable calibration, enabling low uncertainty field use with or without in-situ proving

